

Selective and Sensitive Quantitation of Fingolimod and Fingolimod Phosphate in Human Blood using Differential Ion-Mobility Spectrometry

Laurence Mayrand-Provencher, Milton Furtado and Anahita Keyhani

Overview

Purpose

Evaluation of differential mobility spectrometry (DMS) coupled with LC-MRM to achieve the S/N required to support LOQs of 5.00 pg/mL and 40.0 pg/mL for fingolimod (FM) and fingolimod phosphate (FMP), respectively, in human blood. These LOQs represent a 4-fold and 2.5-fold reduction from existing methodology and result from lowering the therapeutic dose.

Method

The MS platform was changed from an API 5500 to 6500+ to increase overall analyte response, while the SelexION+ DMS was introduced to reduce chemical noise to achieve a S/N ratio at the LOQ sufficient for precise and accurate quantitation. The resultant LC-DMS-MRM assay was then improved further for fingolimod by implementing UHPLC.

Results

By leveraging the separation capacity of DMS and thus eliminating chemical noise, the targeted LOQs of 5.00 pg/mL for FM and of 40.0 pg/mL for FMP in blood were achieved.

Introduction

FM is an immune modulating drug that undergoes phosphorylation when metabolized in humans (Figure 1) and thus, regulatory agencies often require FMP concentrations as complementary data. In a previously developed and validated LC-MRM methodology for FM and FMP in human blood, LOQs of 20.0 pg/mL and 100 pg/mL were achieved. In the current investigation supporting a 3-fold lower FM dose, it was necessary to leverage differential ion-mobility spectrometry (DMS) to achieve the 4-fold and 2.5-fold reduction in LOQs required for FM and FMP, respectively. This research demonstrates that the implementation and optimization of DMS coupled with LC-MRM is necessary to eliminate chemical and endogenous interferences that otherwise challenge the required LOQs for FM and FMP.

Methods

Extraction, Chromatography and Detection

FM and FMP were extracted from human blood (0.6 mL) using protein precipitation coupled with solid-phase extraction. Sensitivity comparisons were conducted between SCIEX Triple Quad 5500 and 6500+ platforms using identical extracts, the 6500+ being evaluated both with and without coupling to SelexION+ DMS. Detection was performed by (+) ESI-MRM for FM (m/z 308 > 255) and (-) ESI-MRM for FMP (m/z 386 > 79). Both FM and FMP were chromatographed along with their respective d₄-internal standards on a C₁₈ column with high pH aqueous mobile phase and methanol. UHPLC (1.7 µm d_p) was also evaluated for FM with identical mobile phases but modified gradient.

Results and Discussion DMS Optimization

Conditions evaluated for the SelexION+ DMS included separation capacity in the presence and absence of dopant. Candidate dopants were first evaluated while infusing FM/FMP to determine separation voltage (SV), compensation voltage (COV) and DMS offset. lonograms obtained for COV optimization are shown in Figures 2 and 3. On-column extract injections were also performed to determine the conditions providing the highest S/N. Optimal dopant for FM and FMP were IPA and MeOH:IPA (1:1), respectively. DMS resolution optimization was also performed and was set at "open" for FM and "off" for FMP.

Extraction Recovery

Despite the disparity in logP between FM and FMP, a single extraction procedure successfully recovered 57% of FM and 49% of FMP. However, high baseline response required further LC-MS/MS modifications to achieve the target LOQs of 5.00 pg/mL (FM) and 40.0 pg/mL (FMP).

API5500 2000 1.0e4 20.0 pg/mL 20.0 pg/mL 1500 S/N = 13:1 S/N = 10:1 6500+ g 1000 -0.5e4 500 0.0 0.5 1.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 Time, min

Figure 4. Cross-platform sensitivity comparison for fingolimod (top) and fingolimod phosphate (bottom).

Results and Discussion (Continued)

Sensitivity Improvement

While the 6500+ (in the absence of SelexION) yielded much higher analyte response than the 5500, background noise increased concomitantly, resulting in S/N loss for FM; in contrast, a S/N gain was noted for FMP (Figure 4). When coupling the SelexION+ DMS with the 6500+, S/N gains of 190% (S/N 29:1) and 69% (S/N 27:1) were observed for FM and FMP when using the optimal dopants. Further sensitivity improvements (2-fold) were obtained for FM by implementing UHPLC (1.7 µm d_n). Peak area ratio LOQ CV's of 8.3% (FM) and 6.3% (FMP) confirmed assay reproducibility at low concentration.

Selectivity Improvement with DMS

In addition to chemical noise reduction, the SelexION+ DMS also improved selectivity for FMP. Through optimization of the SelexION DMS Resolution Enhancement parameter, an endogenous interference co-eluting with FMP could be eliminated with minimal signal loss for FMP. By increasing resolution from "open" to "off", nitrogen gas flow is enabled between the SelexION+ device exit and the MS orifice inlet, improving the DMS resolution and reducing the level of interference from 23% to 11% of LOQ (Figure 5). Signal loss due to the higher DMS resolution was compensated by the decrease in chemical noise, resulting in comparable S/N for each condition.

Figure 5. Fingolimod phosphate interference level comparison between lower (top) vs. higher (bottom) DMS resolution. Extracted blank samples (red) are superimposed with 40.0 pg/mL LOQs (blue).

Conclusion

The highly sensitive and selective LC-DMS-MRM assay reported herein achieved the targeted LOQs of 5.00 pg/mL for FM and of 40.0 pg/mL for FMP extracted from human blood.